Seminar on Mordell Conjecture
ثبت نشده
چکیده
منابع مشابه
Faltings’s Proof of the Mordell Conjecture
Our plan is to try to understand Faltings’s proof of the Mordell conjecture. The focus will be on his first proof, which is more algebraic in nature, proves the Shafarevich and Tate conjectures, and also gives us a chance to learn about some nearby topics, such as the moduli space of abelian varieties or p-adic Hodge theory. The seminar will meet 4:10–5:30 every Thursday in 1360. Some relevant ...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملThe Mordell-lang Conjecture in Positive Characteristic Revisited
We prove versions of the Mordell-Lang conjecture for semiabelian varieties defined over fields of positive characteristic.
متن کاملOn a Dynamical Mordell-lang Conjecture for Coherent Sheaves
We introduce a dynamical Mordell-Lang-type conjecture for coherent sheaves. When the sheaves are structure sheaves of closed subschemes, our conjecture becomes a statement about unlikely intersections. We prove an analogue of this conjecture for affinoid spaces, which we then use to prove our conjecture in the case of surfaces. These results rely on a module-theoretic variant of Strassman’s the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014